2,570 research outputs found

    Pure-glue hidden valleys through the Higgs portal

    Full text link
    We consider the possibility that the Higgs boson can act as a link to a hidden sector in the context of pure-glue hidden valley models. In these models the standard model is weakly coupled, through loops of heavy messengers fields, to a hidden sector whose low energy dynamics is described by a pure-Yang-Mills theory. Such a hidden sector contains several metastable hidden glueballs. In this work we shall extend earlier results on hidden valleys to include couplings of the messengers to the standard model Higgs sector. The effective interactions at one-loop couple the hidden gluons to the standard model particles through the Higgs sector. These couplings in turn induce hidden glueball decays to fermion pairs, or cascade decays with multiple Higgs emission. The presence of effective operators of different mass dimensions, often competing with each other, together with a great diversity of states, leads to a great variability in the lifetimes and decay modes of the hidden glueballs. We find that most of the operators considered in this paper are not heavily constrained by precision electroweak physics, therefore leaving plenty of room in the parameter space to be explored by the future experiments at the LHC.Comment: 44 pages, 16 figures. Major revision for JHEP, corrected an error in Eq. 5.1, comments adde

    Ultrafast control of donor-bound electron spins with single detuned optical pulses

    Full text link
    The ability to control spins in semiconductors is important in a variety of fields including spintronics and quantum information processing. Due to the potentially fast dephasing times of spins in the solid state [1-3], spin control operating on the picosecond or faster timescale may be necessary. Such speeds, which are not possible to attain with standard electron spin resonance (ESR) techniques based on microwave sources, can be attained with broadband optical pulses. One promising ultrafast technique utilizes single broadband pulses detuned from resonance in a three-level Lambda system [4]. This attractive technique is robust against optical pulse imperfections and does not require a fixed optical reference phase. Here we demonstrate the principle of coherent manipulation of spins theoretically and experimentally. Using this technique, donor-bound electron spin rotations with single-pulse areas exceeding pi/4 and two-pulses areas exceeding pi/2 are demonstrated. We believe the maximum pulse areas attained do not reflect a fundamental limit of the technique and larger pulse areas could be achieved in other material systems. This technique has applications from basic solid-state ESR spectroscopy to arbitrary single-qubit rotations [4, 5] and bang-bang control[6] for quantum computation.Comment: 15 pages, 4 figures, submitted 12/2008. Since the submission of this work we have become aware of related work: J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, Science 320: 349-352 (2008

    The Impact of a 4th Generation on Mixing and CP Violation in the Charm System

    Full text link
    We study D0-D0 mixing in the presence of a fourth generation of quarks. In particular, we calculate the size of the allowed CP violation which is found at the observable level well beyond anything possible with CKM dynamics. We calculate the semileptonic asymmetry a_SL and the mixing induced CP asymmetry eta_fS_f which are correlated with each other. We also investigate the correlation of eta_fS_f with a number of prominent observables in other mesonic systems like epsilon'/epsilon, Br(K_L -> pi0 nu nu), Br(K+ -> pi+ nu nu), Br(B_s ->mu+ mu-), Br(B_d -> mu+ mu-) and finally S_psi phi in the B_s system. We identify a clear pattern of flavour and CP violation predicted by the SM4 model: While simultaneous large 4G effects in the K and D systems are possible, accompanying large NP effects in the B_d system are disfavoured. However this behaviour is not as pronounced as found for the LHT and RSc models. In contrast to this, sizeable CP violating effects in the B_s system are possible unless extreme effects in eta_fS_f are found, and Br(B_s ->mu+ mu-) can be strongly enhanced regardless of the situation in the D system. We find that, on the other hand, S_psi phi > 0.2 combined with the measured epsilon'/epsilon significantly diminishes 4G effects within the D system.Comment: 22 pages, 23 figures, v2 (references added

    Human cerebral malaria and Plasmodium falciparum genotypes in Malawi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cerebral malaria, a severe form of <it>Plasmodium falciparum </it>infection, is an important cause of mortality in sub-Saharan African children. A Taqman 24 Single Nucleotide Polymorphisms (SNP) molecular barcode assay was developed for use in laboratory parasites which estimates genotype number and identifies the predominant genotype.</p> <p>Methods</p> <p>The 24 SNP assay was used to determine predominant genotypes in blood and tissues from autopsy and clinical patients with cerebral malaria.</p> <p>Results</p> <p>Single genotypes were shared between the peripheral blood, the brain, and other tissues of cerebral malaria patients, while malaria-infected patients who died of non-malarial causes had mixed genetic signatures in tissues examined. Children with retinopathy-positive cerebral malaria had significantly less complex infections than those without retinopathy (OR = 3.7, 95% CI [1.51-9.10]).The complexity of infections significantly decreased over the malaria season in retinopathy-positive patients compared to retinopathy-negative patients.</p> <p>Conclusions</p> <p>Cerebral malaria patients harbour a single or small set of predominant parasites; patients with incidental parasitaemia sustain infections involving diverse genotypes. Limited diversity in the peripheral blood of cerebral malaria patients and correlation with tissues supports peripheral blood samples as appropriate for genome-wide association studies of parasite determinants of pathogenicity.</p

    String Theory on Warped AdS_3 and Virasoro Resonances

    Get PDF
    We investigate aspects of holographic duals to time-like warped AdS_3 space-times--which include G\"odel's universe--in string theory. Using worldsheet techniques similar to those that have been applied to AdS_3 backgrounds, we are able to identify space-time symmetry algebras that act on the dual boundary theory. In particular, we always find at least one Virasoro algebra with computable central charge. Interestingly, there exists a dense set of points in the moduli space of these models in which there is actually a second commuting Virasoro algebra, typically with different central charge than the first. We analyze the supersymmetry of the backgrounds, finding related enhancements, and comment on possible interpretations of these results. We also perform an asymptotic symmetry analysis at the level of supergravity, providing additional support for the worldsheet analysis.Comment: 24 pages + appendice

    Effective-Range Expansion of the Neutron-Deuteron Scattering Studied by a Quark-Model Nonlocal Gaussian Potential

    Full text link
    The S-wave effective range parameters of the neutron-deuteron (nd) scattering are derived in the Faddeev formalism, using a nonlocal Gaussian potential based on the quark-model baryon-baryon interaction fss2. The spin-doublet low-energy eigenphase shift is sufficiently attractive to reproduce predictions by the AV18 plus Urbana three-nucleon force, yielding the observed value of the doublet scattering length and the correct differential cross sections below the deuteron breakup threshold. This conclusion is consistent with the previous result for the triton binding energy, which is nearly reproduced by fss2 without reinforcing it with the three-nucleon force.Comment: 21 pages, 6 figures and 6 tables, submitted to Prog. Theor. Phy

    Ligand substitution reactions of a phenolic quinolyl hydrazone; oxidovanadium (IV) complexes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quinoline ring has therapeutic and biological activities. Quinolyl hydrazones constitute a class of excellent chelating agents. Recently, the physiological and biological activities of quinolyl hydrazones arise from their tendency to form metal chelates with transition metal ions. In this context, we have aimed to study the competency effect of a phenolic quinolyl hydrazone (H<sub>2</sub>L; primary ligand) with some auxiliary ligands (Tmen, Phen or Oxine; secondary ligands) towards oxidovanadium (IV) ions.</p> <p>Results</p> <p>Mono- and binuclear oxidovanadium (IV) - complexes were obtained from the reaction of a phenolic quinolyl hydrazone with oxidovanadium (IV)- ion in absence and presence of N,N,N',N'- tetramethylethylenediamine (Tmen), 1,10-phenanthroline (Phen) or 8-hydroxyquinoline (Oxine). The phenolic quinolyl hydrazone ligand behaves as monobasic bidentate (NO- donor with O- bridging). All the obtained complexes have the preferable octahedral geometry except the oxinato complex (<b>2</b>) which has a square pyramid geometry with no axial interaction; the only homoleptic complex in this study.</p> <p>Conclusion</p> <p>The ligand exchange (substitution/replacement) reactions reflect the strong competency power of the auxiliary aromatic ligands (Phen/Oxine) compared to the phenolic quinolyl hydrazone (H<sub>2</sub>L) towards oxidovanadium (IV) ion; (complexes <b>2 </b>and <b>3</b>). By contrast, in case of the more flexible aliphatic competitor (Tmen), an adduct was obtained (<b>4</b>). The obtained complexes reflect the strength of the ligand field towards the oxidovanadium (IV)- ion; Oxine or Phen >> phenolic hydrazone (H<sub>2</sub>L) > Tmen.</p

    End points for sickle cell disease clinical trials: patient-reported outcomes, pain, and the brain

    Get PDF
    To address the global burden of sickle cell disease (SCD) and the need for novel therapies, the American Society of Hematology partnered with the US Food and Drug Administration to engage the work of 7 panels of clinicians, investigators, and patients to develop consensus recommendations for clinical trial end points. The panels conducted their work through literature reviews, assessment of available evidence, and expert judgment focusing on end points related to: patient-reported outcomes (PROs), pain (non-PROs), the brain, end-organ considerations, biomarkers, measurement of cure, and low-resource settings. This article presents the findings and recommendations of the PROs, pain, and brain panels, as well as relevant findings and recommendations from the biomarkers panel. The panels identify end points, where there were supporting data, to use in clinical trials of SCD. In addition, the panels discuss where further research is needed to support the development and validation of additional clinical trial end points

    State-space Manifold and Rotating Black Holes

    Full text link
    We study a class of fluctuating higher dimensional black hole configurations obtained in string theory/ MM-theory compactifications. We explore the intrinsic Riemannian geometric nature of Gaussian fluctuations arising from the Hessian of the coarse graining entropy, defined over an ensemble of brane microstates. It has been shown that the state-space geometry spanned by the set of invariant parameters is non-degenerate, regular and has a negative scalar curvature for the rotating Myers-Perry black holes, Kaluza-Klein black holes, supersymmetric AdS5AdS_5 black holes, D1D_1-D5D_5 configurations and the associated BMPV black holes. Interestingly, these solutions demonstrate that the principal components of the state-space metric tensor admit a positive definite form, while the off diagonal components do not. Furthermore, the ratio of diagonal components weakens relatively faster than the off diagonal components, and thus they swiftly come into an equilibrium statistical configuration. Novel aspects of the scaling property suggest that the brane-brane statistical pair correlation functions divulge an asymmetric nature, in comparison with the others. This approach indicates that all above configurations are effectively attractive and stable, on an arbitrary hyper-surface of the state-space manifolds. It is nevertheless noticed that there exists an intriguing relationship between non-ideal inter-brane statistical interactions and phase transitions. The ramifications thus described are consistent with the existing picture of the microscopic CFTs. We conclude with an extended discussion of the implications of this work for the physics of black holes in string theory.Comment: 44 pages, Keywords: Rotating Black Holes; State-space Geometry; Statistical Configurations, String Theory, M-Theory. PACS numbers: 04.70.-s Physics of black holes; 04.70.Bw Classical black holes; 04.70.Dy Quantum aspects of black holes, evaporation, thermodynamics; 04.50.Gh Higher-dimensional black holes, black strings, and related objects. Edited the bibliograph
    corecore